Cambridge International
A Level

Cambridge Assessment International Education
Cambridge International Advanced Level

MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2 :

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

[^0]
Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	$(T-1)^{4} / 2=8$	M1 A1	Equate radial acceln. to 8 at $t=T$ from v^{2} / r
	$T=3($ or $T-1=2)$	$\mathbf{A 1}$	Hence find positive value of $T($ or of $T-1)$
	$a_{T}=2(T-1)=4\left[\mathrm{~m} \mathrm{~s}^{-2}\right]$	$\mathbf{M 1} \mathbf{A 1}$	Find magnitude of transverse acceleration at $t=T$
		$\mathbf{5}$	

Question	Answer	Marks	Guidance
2(i)	$\begin{array}{ll} R_{E} \times 3 a=W \cos \theta \times 2 a-W \sin \theta \times 2 a \\ \text { or } & R_{E} \times 3 a=W \times 2 a(1-\tan \theta) \cos \theta \\ \text { or } & R_{E} \times 3 a=2 \sqrt{2} W \sin \left(\frac{\pi}{4}-\theta\right) \end{array}$	M1 A1	Take moments about B
	$R_{E}=4 W / 3 \sqrt{ } 10$	A1	Find normal reaction at E. AEF
	$R_{B}=W-R_{E} \cos \theta=3 W / 5$	M1 A1	Find normal reaction at B by resolving forces vertically
		5	
2(ii)	$F_{B}=R_{E} \sin \theta=2 W / 15$	M1 A1	Find friction at B by resolving forces horizontally
	$\mu=(2 / 15) /(3 / 5)=2 / 9$	A1	Find μ from $F_{B}=\mu R_{B}$
		3	

Question	Answer	Marks	Guidance
3(i)	$5 m v_{A}+5 m v_{B}=5 m u\left[v_{A}+v_{B}=u\right]$ and $v_{B}-v_{A}=e u$	M1	Use consvn. of momentum for A and B and use Newton's restitution law with consistent LHS signs. AEF
	$v_{A}=1 / 2(1-e) u$	A1	Combine to verify speed of A. AG
	$v_{B}=1 / 2(1+e) u$	A1	Find speed of B
		3	
3(ii)	$\begin{aligned} & 5 m v_{B}^{\prime}+3 m v_{C}=5 m v_{B} \quad\left[5 v_{B}^{\prime}+3 v_{C}=5 v_{B}\right] \\ & v_{C}-v_{B}^{\prime}=e v_{B} \end{aligned}$	M1	Use consvn. of momentum for B and C and use Newton's restitution law with consistent LHS signs. AEF
	$v_{B}^{\prime}=(1 / 8)(5-3 e) v_{B}\left[v_{C}=(1 / 8)(5+5 e) v_{B}\right]$	A1	Combine to find $v_{B}{ }^{\prime}$ (v_{C} not reqd as B, C cannot collide again)
	$\frac{1}{2}(1-e) u \leqslant(1 / 8)(5-3 e) \times \frac{1}{2}(1+e) u$	M1	Find condition on e using $v_{A} \leqslant v_{B}^{\prime}$
	$3 e^{2}-10 e+3 \leqslant 0$	A1	Simplify to a quadratic inequality
	$\frac{1}{3} \leqslant e$	A1	Solve to give a lower bound on e
	$\frac{1}{3} \leqslant e \leqslant 1$	A1	Non-strict inequality
		6	

Question	Answer	Marks	Guidance
4(i)	$\frac{1}{2} m v^{2}=\frac{1}{2} m u^{2}-m g a \cos \theta$	M1	Use conservation of energy to slack point P_{1}
	$m v^{2} / a-m g \cos \theta=0$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	Equate tension at P_{1} to 0 by using $F=m a$ A1 if both eqns correct, with m included. AG
	$v^{2}=2 a g-2 a g \cos \theta=a g \cos \theta$	M1	Combine to verify $\cos \theta$ using $u=\sqrt{ }(2 a g)$
	$\cos \theta=2 / 3$	A1	
		5	
4(ii)	$\begin{aligned} & v_{\mathrm{V}}=v \sin \theta=\sqrt{ }(2 a g / 3)(\sqrt{ } 5 / 3) \\ & \text { or } \quad v_{\mathrm{v}}^{2}=(10 / 27) a g \end{aligned}$	M1	Find vertical speed v_{v} at P_{1}
	$\begin{aligned} & h=v_{\mathrm{v}}{ }^{2} / 2 g=(5 / 27) a \\ & \text { or } \quad 0 \cdot 185 a \end{aligned}$	M1 A1	Find height risen above P_{1} by considering vertical motion
	$\begin{aligned} & h+a \cos \theta=(23 / 27) a \\ & \text { or } \quad 0 \cdot 852 a \end{aligned}$	A1	Find total height risen above level of O
		4	

Question	Answer	Marks	Guidance
5(i)	$I_{\text {rod }}=\frac{1}{3} \lambda M a^{2}+\lambda M(a / 2)^{2} \quad\left[=(7 / 12) \lambda M a^{2}\right]$	B1	Find or state MI of $\operatorname{rod} A B$ about axis L
	$I_{O}=\frac{2}{3} 3 M a^{2}+3 M(5 a / 2)^{2} \quad\left[=(83 / 4) M a^{2}\right]$	M1 A1	Find MI of hollow sphere centre O about axis L
	$I_{C}=(2 / 5) 5 M a^{2}+5 M(3 a / 2)^{2} \quad\left[=(53 / 4) M a^{2}\right]$	M1 A1	Find MI of solid sphere centre C about axis L
	$\begin{aligned} I & =(7 \lambda / 12+83 / 4+53 / 4) M a^{2} \\ & =((7 \lambda+408) / 12) M a^{2} \end{aligned}$	A1	Verify MI of object about axis L. AG
		6	
5(ii)	$\begin{aligned} {[-] I \mathrm{~d}^{2} \theta / \mathrm{d} t^{2}=[-3 M g \times} & (5 a / 2) \sin \theta+5 M g \times(3 a / 2) \sin \theta] \\ & -\lambda M g \times(a / 2) \sin \theta \end{aligned}$	M1 A1	Use eqn of circular motion to find $\mathrm{d}^{2} \theta / \mathrm{d} t^{2}$ where θ is angle of rod with vertical. AEF
	$\mathrm{d}^{2} \theta / \mathrm{d} t^{2}=-\{6 \mathrm{~g} \lambda /(7 \lambda+408) a\} \theta$	M1*	Approximate $\sin \theta$ by θ to give standard form of SHM eqn
	$T=2 \pi \sqrt{ }\{(7 \lambda+408) a / 6 g \lambda\}=5 \pi \sqrt{ }(2 a / g)$	DM1A1	Find possible values of λ by equating period T to $5 \pi \sqrt{ }(2 a / g)$.AEF
	$\lambda=6$	A1	
		6	

Question	Answer	Marks	Guidance
6(i)	$t \sqrt{ }\left(s^{2} / 9\right)=1 / 2(1.85-1.65)[=0.1]$	M1	Find estimate s^{2} of population variance (must be t)
	$t_{8,0.975}=2.306$ (to 3 s.f.)	A1	Use of correct tabular t-value
	$s^{2}=9 \times 0 \cdot 04337^{2}=0.0169$ or $0 \cdot 130[1]^{2}$	A1	
		3	
6(ii)	$\begin{aligned} & \bar{x}=\frac{1}{2}(1.65+1.85)=1.75 \\ & \text { or } \quad \sum x=9 \times 1.75=15.75 \end{aligned}$	M1 A1	Find sample mean \bar{x}
	$\begin{aligned} & s^{2}=\left(\sum x^{2}-9 \times \bar{x}^{2}\right) / 8 \\ & \text { or } \quad\left\{\Sigma x^{2}-(\Sigma x)^{2} / 9\right\} / 8 \end{aligned}$	M1	or $\sum x$
	$\Sigma x^{2}=8 \times 0.0169+15.75^{2} / 9=27.7$	A1	Find Σx^{2} from s^{2}
		4	

Question	Answer	Marks	Guidance
7(i)	$a=1 / 200$ or 0.005	B1	State a or find a by equating mean value to $1 / a$
		1	
7(ii)	$p=\mathrm{P}(T<150)=\mathrm{F}(150)=1-\mathrm{e}^{-150 a}$	M1	Find $\mathrm{P}(T<150)$
	$p=1-\mathrm{e}^{-0.75}=0.528$	A1	
		2	
7(iii)	$1-p^{n}>0.99$	M1	Formulate condition for n
	$\begin{aligned} & 0.01>\left(1-\mathrm{e}^{-0.75}\right)^{n} \\ & \text { or } \quad 0.01>0.528^{n} \end{aligned}$	A1	
	$n>\log 0.01 / \log 0.528$	M1	Rearrange and take logs to give bound
	$n>7 \cdot 20$ [or 7.21] so $n_{\text {min }}=8$	A1	Find $n_{\text {min }}$
		4	

Question	Answer	Marks	Guidance
8	$\bar{x}_{A}=32.4 / 8=4.05$	B1	Find sample mean for A
	$\begin{aligned} & s_{A}{ }^{2}=\left(131 \cdot 82-32 \cdot 4^{2} / 8\right) / 7 \\ & s_{A}{ }^{2}=3 / 35\left(\text { or } 0.08571 \text { or } 0.2928^{2} \text { both to } 3 \text { s.f. }\right) \end{aligned}$	M1	Estimate or imply popln. variance for A
	$\mathrm{H}_{0}: \mu_{A}=\mu_{B}, \mathrm{H}_{1}: \mu_{A} \neq \mu_{B}$	B1	State hypotheses. AEF
	$s^{2}=\left(7 s_{A}^{2}+9 s_{B}^{2}\right) / 16=0 \cdot 12497 \text { or } 0.3535^{2} \text { or } \frac{3999}{32000}$	M1 A1	Estimate (pooled) common variance
	$t_{16,0.95}=1.746$	B1*	State or use correct tabular t value
	$[-] t=\left(x_{A}-\bar{x}_{B}\right) / s \sqrt{ }(1 / 8+1 / 10)$	M1	
	$=0.27 / 0.1677=1.61$	A1	Find value of t (or can compare $\bar{x}_{A}-\bar{x}_{B}=0.27$ with 0.293)
	$t<1.75$ so [accept H_{0}] mean masses are the same	DB1	Correct conclusion (FT on t, dep B1*). AEF
		9	

Question	Answer	Marks	Guidance
9(i)	$\begin{aligned} & \Sigma x=15, \Sigma y=7+p+q, \Sigma x y=17+2 p+3 q \\ & \Sigma x^{2}=55,\left[\Sigma y^{2}=21+p^{2}+q^{2}\right] \end{aligned}$	M1	Find required summations
	$\begin{aligned} & S_{x x}=55-15^{2} / 5=10 \text { and } \\ & S_{x y}=17+2 p+3 q-15 \times(7+p+q) / 5=-4-p \end{aligned}$	M1 A1	
	$-0 \cdot 5=S_{x y} / S_{x x}=(-4-p) / 10 \quad p=1$	M1 A1	Find p from gradient in eqn. of regression line
	$(7+p+q) / 5=-0.5 \times 15 / 5+3.5 \quad q=2$	M1 A1	Find q from means and regression line
		7	
9(ii)	$\Sigma y=10, \Sigma y^{2}=26, S_{y y}=26-10^{2} / 5=6$	M1	Find $S_{y y}$
	$r=S_{x y} / \sqrt{ }\left(S_{x x} S_{y y}\right)=-5 / \sqrt{ }(10 \times 6)$	M1	Find correlation coefficient r
	$r=-0.645[5]$ [allow -0.646]	A1	
		3	

Question	Answer	Marks	Guidance
10(i)	$\mathrm{F}(x)=\int \mathrm{f}(x) \mathrm{d} x=(1 / 30)\left(-8 / x+x^{3}-14 x\right)[+c]$	M1	Find or state distribution function $\mathrm{F}(x)$ for $2 \leqslant x \leqslant 4$
	$\mathrm{F}(x)=(1 / 30)\left(-8 / x+x^{3}-14 x+24\right)$	M1	Using $\mathrm{F}(2)=0$ or $\mathrm{F}(4)=1$ to find c if necessary. AEF
	$\mathrm{F}(x)=0(x<o r \leqslant 2), \mathrm{F}(x)=1(x>o r \geqslant 4)$	A1	State $\mathrm{F}(x)$ for other values of x
		3	
10(ii)	$\begin{aligned} & \mathrm{G}(y)=\mathrm{P}(Y<y)=\mathrm{P}\left(X^{2}<y\right) \\ & \mathrm{G}(y)=\mathrm{P}(X<\sqrt{ } y)=\mathrm{F}(\sqrt{ } y) \\ & \mathrm{G}(y)=(1 / 30)\left(-8 / y^{\frac{1}{2}}+y^{\frac{3}{2}}-14 y^{\frac{1}{2}}+24\right) \end{aligned}$	M1 A1	Find or state $\mathrm{G}(y)$ for $2 \leqslant x \leqslant 4$ from $Y=X^{2}$ (allow $<$ or \leqslant throughout)
	Alternative method for question 10 (ii)		
	Use $x=y^{\frac{1}{2}}$ to find $\mathrm{f}(x)=(1 / 30)(8 / y+3 y-14), \frac{\mathrm{d} x}{\mathrm{~d} y}=-\frac{1}{2} y^{-\frac{1}{2}}$	(M1 A1)	Find $\mathrm{f}(x)$ and $\frac{\mathrm{d} x}{\mathrm{~d} y}$ for use in $\mathrm{g}(y)=\mathrm{f}(x) \times\left\|\frac{\mathrm{d} y}{\mathrm{~d} x}\right\|$
	$\mathrm{g}(y)\left[=\mathrm{G}^{\prime}(y)\right]=(1 / 30)\left(4 / y^{\frac{3}{2}}+(3 / 2) y^{\frac{1}{2}}-7 / y^{\frac{1}{2}}\right)$ for $4 \leqslant y \leqslant 16[\mathrm{~g}(y)=0$ otherwise]	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	Find $g(y)$. AEF State corresponding range of y for $\mathrm{G}(y)$ or $\mathrm{g}(y)$
		4	
10(iii)	$(1 / 30)\left(-8 / y^{\frac{1}{2}}+y^{\frac{3}{2}}-14 y^{\frac{1}{2}}+24\right)=0.8$	M1	$\operatorname{Set} \mathrm{G}(y)=0 \cdot 8$
	$-8+y^{2}-14 y=0, y=7+\sqrt{ } 57 \text { or } 14 \cdot 5[5]$ [rejecting $7-\sqrt{ } 57$; allow 14.6]	M1 A1	Rearrange to give quadratic in y and solve to find value of y
		3	

Question	Answer	Marks	Guidance
$11 \mathrm{~A}(\mathrm{i})$	$10(A P-0.6) / 0.6=20(1.2-A P-0.4) / 0.4$	M1 A1	Verify $A P$ by equating equilibrium tensions. AEF
	$\begin{aligned} & 4 A P-2.4=9.6-12 A P \\ & A P=0.75[\mathrm{~m}] \end{aligned}$	A1	AG
		3	
11A(ii)	$\begin{aligned} & m \mathrm{~d}^{2} x / \mathrm{d} t^{2}=-10(0 \cdot 15+x) / 0 \cdot 6+20(0 \cdot 05-x) / 0 \cdot 4 \\ & \text { or } m \mathrm{~d}^{2} x / \mathrm{d} t^{2}=+10(0 \cdot 15-x) / 0 \cdot 6-20(0 \cdot 05+x) / 0 \cdot 4 \end{aligned}$	$\begin{array}{r} \mathrm{M} 1 \\ \mathrm{~A} 1 \mathrm{~A} 1 \end{array}$	Apply Newton's law at $0.75+x$ or $0.75-x$ from A (M1 requires LHS and 2 tensions: A1 for each correct tension)
	$2 / 3 \mathrm{~d}^{2} x / \mathrm{d} t^{2}=-(80 / 1 \cdot 2) x, \mathrm{~d}^{2} x / \mathrm{d} t^{2}=-100 x$	M1 A1	Simplify to give SHM eqn. in standard form
	$T=2 \pi / \omega=2 \pi / 10=\pi / 5$ or $0.628[\mathrm{~s}]$	DB1	State the period T with FT on ω from SHM eqn.
		6	
11A(iii)	$\begin{aligned} & (a=0.75-0.7=0.05) \\ & v_{\max }=\omega \times a \end{aligned}$	M1	Find speed at equilibrium position from ωa
	$v_{\text {max }}=0 \cdot 5\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$	A1	
		2	
11A(iv)	$x=a / 2=0.025$	M1	Find value of x giving half max. acceln.
	$v=\omega \sqrt{ }\left(a^{2}-x^{2}\right)=10 \sqrt{ }\left(0.05^{2}-0.025^{2}\right)$	M1	
	$v=0.433\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$	A1	Find corresponding speed
		3	

Question	Answer	Marks	Guidance
11B(i)	$\bar{x}=(1 / 40) \sum x \mathrm{f}(x)=68 / 40=1 \cdot 7$	B1	Find mean of sample
	$(1 / 40) \sum x^{2} \mathrm{f}(x)=178 / 40=4.45, \operatorname{Var}=4.45-1.7^{2}=1.56$	B1	Find variance of sample
	Mean and variance are similar so Poisson may be suitable	B1	State valid comment
		3	
11B(ii)	$a=40 \times 1.6^{5} \mathrm{e}^{-1.6} / 5!=40 \times 0.01764$	M1	AG
	$a=0.706$	A1	Verify a from Poisson term
	$b=40-39.758=0.242$	B1*	Find b
		3	
11B(iii)	H_{0} : Distribution fits/models data	B1	State (at least) null hypothesis in full
	$\begin{array}{lllll} O_{i}: & 6 & 15 & 9 & \underline{10} \\ E_{i}: & 8.076 & 12.921 & 10.337 & \underline{8.666} \end{array}$	$\begin{array}{r} \text { DM1 } \\ \text { A1 } \end{array}$	Combine values consistent with all exp. values $\geqslant 5$ (FT on $b, \operatorname{dep} \mathrm{~B} 1^{*}$)
	$X^{2}=0.5337+0.3345+0.1729+0.2053=1.25$	M1	Find value of X^{2} from $\Sigma\left(E_{i}-O_{i}\right)^{2} / E_{i}\left[\right.$ or $\left.\Sigma O_{i}^{2} / E_{i}-n\right]$
	$X^{2}=1.25$	A1	
	No. n of cells: 7 6 5 $\underline{4}$ 3 $\chi_{n-1,0.9}{ }^{2}:$ 10.64 9.236 7.779 $\underline{6 \cdot 251}$ 4.605	DB1	State or use consistent tabular value $\chi_{n-1,0.9}{ }^{2}$ (to 3 s.f.) [FT on number, n, of cells used to find X^{2}]
	Accept H_{0} if $X^{2}<$ tabular value (using their values)	M1	AEF
	$1.25[\pm 0.1]<6.25$ so distn. fits [data] or distn. is a suitable model	A1	Conclusion (requires both values approx. correct). AEF
		8	

[^0]: GENERIC MARKING PRINCIPLE 6:
 Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

